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Ion mobility measurements are one of the few methods
presently available that can directly probe the structures of
relatively large molecules in the gas phase. Here we review
the application of ion mobility methods to the elucidation of
the structures of semiconductor clusters (Sin, Gen, and Snn).
We describe the new high-resolution implementation of the
technique and the advanced methods of mobility calcula-
tions that are crucial for the correct analysis of the
experimental data.

1 Introduction

It is difficult to understand anything without information about
its structure. While this statement is probably true in all areas of
science, it is particularly valid in the chemical sciences where
understanding of a molecular system almost always hinges on
elucidation of its structure. In the gas phase, high resolution
spectroscopy has provided remarkably detailed structural
information for small molecules. However, current interest is
focused more on much larger and more complex systems, for
example, atomic clusters and anhydrous biomolecules. The
traditional spectroscopic methods often fail for these complex
systems. And the other structural tools available to chemists,
such as NMR and X-ray diffraction, cannot be used because the
sample densities are too low. In this article, we describe the
development of high-resolution ion mobility methods as a
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structural tool and the application of this approach to the
characterization of gas phase atomic clusters,1 specifically
semiconductor clusters. Our interest in the structures of these
species stems from a desire to understand how the geometries of
small particles containing tens of atoms evolve into the bulk
crystal structure. The methods outlined here have also been
applied to relatively large biomolecules, such as peptides and
proteins, but we do not describe that work here.2

2 Ion mobility measurements

The mobility of an ion is a measure of how rapidly it moves
through a buffer gas under the influence of an electric field.3 In
the low field limit (see below) the mobility of a cation or anion
depends on its orientationally-averaged collision integral with
the buffer gas, which in turn depends on the ion’s geometry.
Ions with open geometries undergo more collisions with the
buffer gas and hence travel more slowly than compact ions.
Thus ion mobilities provide a way to characterize an ion by its
physical size and this property has been exploited by analytical
chemists.4 For example, the portable chemical warfare agent
detectors currently used by the US Army and NATO are ion
mobility spectrometers that operate under ambient conditions
(the mobilities are measured in air). Ion mobility measurements
have been used by physical chemists for many years to
characterize ion–molecule interactions.3 These measurements
are usually performed under well-defined conditions on instru-
ments that incorporate mass spectrometers to identify the ion.
Mobility measurements have also been used to determine
particle size distributions.5 That structural isomers of the same
ion can have different mobilities was first demonstrated by
Carr,6 though it was the work of Bowers and collaborators
which really showed the potential of mobility measurements as
a structural probe. Their studies of carbon clusters confirmed
the presence of chains, monocyclic rings, and fullerenes and
revealed a variety of polycyclic ring isomers.7 A number of
new, and more exotic, carbon cluster isomers have now been
observed and assigned, including ‘fullerene dumbells’ (full-
erenes linked by a carbon chain) and ‘tadpoles’ (a chain
attached to a carbon ring).8 Furthermore, annealing studies have
shown that carbon rings can be converted into fullerenes,
providing the basis for the most plausible mechanism of
fullerene synthesis.9 Mobility measurements have also been
applied to a variety of metal-containing carbon clusters, salt
clusters, and metal clusters in addition to the clusters of the
Group 14 elements discussed here.10

3 Experimental methods

Mobility measurements are usually performed in a drift tube.3
The drift tube contains the buffer gas and provides a uniform
electric field for the ions. Experiments intended to deduce
structural information from ion mobility measurements must be
performed under well defined conditions, where the mass of the
drifting ion is known and the buffer gas does not contain species
that can cluster with the drifting ions. Two basic experimental
configurations have been employed: the injected ion drift tube
(which usually has a buffer gas pressure < 10 Torr)11 and the
high resolution configuration (with a buffer gas pressure of
hundreds of Torr).12,13 In the injected ion drift tube approach,
ions (often mass-selected) are injected into a drift tube through
a small aperture. After traveling across the drift tube, some of
the ions exit through another aperture. They are then mass
analyzed and detected. Mobilities are measured by injecting a
short packet of ions and recording how long it takes for them to
reach the detector. If the injected packet is sufficiently narrow,
the width of the ion packet at the detector is limited by

diffusional broadening as it travels through the drift tube (the
ion densities are usually low enough that space charge effects
are negligible in these experiments). The resolving power is
then given by eqn. (1)14
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where tDT is the drift time, t1/2 is the width of the peak at half
height, ze is the charge on the ion, V is the voltage drop across
the drift tube, and T is the temperature. The resolving power is
increased by raising V or lowering T. The energy that the ions
gain from the drift field is determined by E/N, where E is the
drift field and N is the buffer gas number density. In the low
field regime, the drift velocity is much less than the average
relative velocity between the ion and a buffer gas atom and the
mobility (defined by K = vD/E) is independent of the field. In
the high field regime, the mobility depends on the drift field. It
is desirable to keep the drifting ions in the low field regime for
several reasons, in particular it greatly simplifies the inter-
pretation of the results. So if V is increased to enhance the
resolution, N must be raised to keep the ions in the low field
regime. However, the pressure in the drift tube cannot be
increased too much above 10 Torr because then it is no longer
possible to inject intact ions into the drift field. As the ions enter
the drift tube they undergo collisions with the buffer gas which
converts some of their kinetic energy into internal energy. As
the buffer gas pressure is increased, higher injection energies
are required and the ions are collisionally heated to the point
where they dissociate. In our injected ion drift tube apparatus,
cluster ions are generated by pulsed laser vaporization, and then
mass selected by a quadrupole mass spectrometer before being
injected into the drift tube. The drift tube is 7.6 cm long and
operated with a buffer gas pressure of 3–10 Torr and a drift
voltage of 100 V. This yields a resolving power of around 10.
Ions that exit the drift tube are mass analyzed by a second
quadrupole mass spectrometer, and then detected by an off-axis
collision dynode and dual microchannel plates.

The high resolution configuration is conceptually similar to
that employed in ion mobility spectrometers developed for
analytical applications. Our high resolution apparatus is shown
schematically in Fig. 1.12 It consists of a source region directly
attached to a 63 cm long drift tube and the whole assembly
operates at a pressure of around 500 Torr. At the end of the drift
tube the exiting ions are analyzed by a quadrupole mass
spectrometer and detected. Cluster ions are generated by pulsed
laser vaporization and drawn into the drift tube region of the
instrument by electric fields. Neutral species are prevented from
passing from the source region into the drift tube by the ion gate
which consists of a stack of electrodes with 5 mm apertures. An
electric field draws the ions through the ion gate while a counter
flow of buffer gas stops the neutrals. In the drift tube, a uniform
electric field is provided by a stack of electrodes connected to a
voltage divider. The drift voltage is 10 000–15 000 V. This
provides a resolving power of  > 100, an order of magnitude
improvement over that obtained in the injected ion drift tube
configuration. The drift voltage is limited by electrical break-
down.

In many respects the injected ion drift tube and the high
resolution configuration are complementary. With the ability to
inject ions at controlled energies, and with mass selection before
and after the drift tube, the injected ion drift tube can be used to
perform studies beyond simple mobility measurements. For
example, isomer-specific reactivities with molecules diluted
into the buffer gas can be examined.11 By varying the injection
energy one can examine the interconversion between different
structural isomers.10 Here, some of the ion’s injection energy is
converted into internal energy as it enters the drift tube. Once in
the drift tube the cluster cools by further collisions with the
buffer gas. This heating–cooling cycle anneals a cluster into the

Chem. Soc. Rev., 2001, 30, 26–35 27



geometry that is thermodynamically preferred at the energy
where the isomer populations are frozen-in (this is not
necessarily the global minimum). By raising the injection
energy further the ions become hot enough to dissociate and one
can estimate dissociation energies and identify the fragmenta-
tion products.15

Another important feature is the ability to change the
temperature of the drift tube. Temperature-dependent measure-
ments provide information about the ion–buffer gas interaction
potential and enables one to study the processes of thermally-
induced dissociation and isomerization. Information on liquid–
solid phase transitions has also recently been obtained (see
below). The small drift tube used in the injected ion drift tube
apparatus is readily cooled down to < 80 K by liquid nitrogen
flow or resistively heated to > 500 K. The temperature of the
large drift tube in the high-resolution apparatus can be varied
over a narrower range around 300 K. With the high resolution
apparatus it is possible to follow cluster isomerization processes
that occur as the ions travel through the drift tube. Isomerization
rates can be obtained by varying the drift time (over the range
0.1–1.0 s) and Arrhenius activation parameters can be derived if
these measurements are performed as a function of tem-
perature.10

4 Mobility calculations

Structural assignments for unknown species observed in
mobility measurements become possible by comparison of the
measured mobilities with mobilities computed for reasonable
candidate geometries. In general, the mobility of a rigid ion
undergoing elastic collisions with a gas depends on a series of
collision integrals, W(l,s), which characterize the ion and buffer
gas combination. In the Rayleigh limit where m (the mass of the
ion) > > mb (the mass of a buffer gas atom) the series of
collision integrals reduces essentially to a single one, W(1,1) (see
below). Since helium is the buffer gas of choice, this
approximation is almost always valid. Another crucial simplifi-
cation is achieved by operating in the low field limit where the
relative velocity distribution of the ion and buffer gas is
essentially thermal at the buffer gas temperature. This ensures
that there is no alignment of the drifting ion and so the effective
collision integral equals the orientationally averaged quantity
W(1,1)

avg . In the low field limit, the mobility is proportional to the
diffusion constant and can be calculated from eqn. (2)14
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where r is the buffer gas number density. Evaluating eqn. (2)
reduces to calculating W(1,1)

avg . For a monatomic ion with a
centrally symmetric potential, W(1,1)

avg can be calculated analyt-
ically for many simple potential forms. For polyatomic ions,
collisions can exchange energy between the rotational and
translational degrees of freedom. The way to account for this
using the rigid rotor approximation has been worked out for
diatomic ions.16 A general solution has not been attempted, but,
calculations indicate that the effect should be small (on average)
for the large ions considered here, because of the huge disparity
between their moments of inertia and the impulses provided by
the collisions of light helium atoms at typical room temperature
velocities.

Ignoring rotational–translational coupling, the collision in-
tegral is obtained by integrating the momentum transfer cross-
section over the distribution of relative velocities between the
buffer gas atom and the ion. The momentum transfer cross-
section (for a particular collision geometry) is obtained by
averaging a function of scattering angle c over the impact
parameter b eqn. (3):
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where m is the reduced mass, g is the relative velocity, and the
collision geometry is defined by angles q, f, and g. Eqn. (3)
cannot be solved analytically and even a numerical solution is
difficult. The simplest approximation is to draw a closed surface
around the ion to mark the hard sphere collision distance and to
assume that the cross-section in each orientation is equal to the
projection of that surface on a plane (the ‘projection approxima-
tion’). This reduces eqn. (3) to eqn. (4):

W q f f g q f gavg d d d d( , ) sin ( , , , )11
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where M is unity when a hard-sphere impact occurs for a
collision geometry defined by q, f, g, and b and zero otherwise.

Fig. 1 Schematic diagram of the high-resolution ion mobility apparatus.
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It is interesting to note that this type of model was first used in
1925 when it was employed to deduce structural information
from diffusion constant measurements (another transport prop-
erty which is closely related to the low field mobility). At that
time eqn. (4) was evaluated by constructing a scale model of the
candidate geometry out of bees wax, manually determining the
size of the shadow it projects, and then averaging over different
orientations. Now, eqn. (4) can easily be solved numerically on
a computer. Each atom in the ion is represented by a sphere with
a radius given by the sum of the helium atom radius and the
radius of the atom in the ion. Since these collision radii are not
precisely defined, they are adjusted within a narrow range to fit
the measured collision integrals. Substantial internal incon-
sistencies have been found with the projection approximation.
For example, when the collision radius is set to reproduce the
mobilities of fullerenes, the calculated mobilities for carbon
chains deviate from experiment by more than 20%. Never-
theless, the projection approximation was successfully used to
assign features observed in the early studies of carbon clusters.
This is partly because the carbon cluster isomers separated in
the early studies have very different shapes and hence very
different mobilities, and partly because it was already known
what isomers to expect (for example, chains and then rings were
expected for the small clusters, and fullerenes were expected for
the larger ones) so even a fairly crude mobility calculation was
enough for a successful structural assignment. However, it is
now clear that the projection approximation is inadequate for
many problems. And its inadequacy is compounded by the
development of improved experimental techniques which
permit the resolution of isomers with mobilities that differ by
less than 1%.

While it is obvious that the projection approximation neglects
all long-range attractive interactions between the ion and buffer
gas atoms, it is less obvious that it also ignores all the details of
the scattering process. For a body made entirely of convex
surfaces the effects of scattering (with a hard sphere potential)
are not important and the collision integral evaluated from the
scattering angles is equal to that obtained from the projection
approximation.17 However, when atoms are scattered on bodies
with concave surface some of the trajectories experience
multiple collisions. The collision integral calculated from the
scattering angles then exceeds that obtained from the projection
approximation.17 While all molecular surfaces have concave
parts because of local surface roughness, this typically only
results in a few percent difference between the collision integral
and the projection. However, for objects with grossly uneven
surfaces or cavities, differences of up to 25% have been found.17

The exact hard-spheres scattering (EHSS) model was developed
to account for multiple scattering within the framework of a
hard sphere potential.17 Like the projection approximation, the
ion is treated as a collection of hard spheres and the collision
radius is adjusted to reproduce the measured mobilities. While
this model is a significant improvement over the projection
approximation, it still ignores all long-range interactions
between the ion and buffer gas.

The long-range interactions are incorporated by propagating
classical trajectories between buffer gas atoms and the target ion
in a realistic intermolecular potential.18 The scattering angle, c,
is determined from the trajectory and eqn. (3) is solved
numerically. In the work performed so far, the potential
between the ion and buffer gas atom is assumed to consist of
two parts: van der Waals and charge-induced dipole inter-
actions. The first term is modeled as a sum of pair-wise
Lennard–Jones (6–12) interactions between the buffer gas atom
and each atom in the ion. The Lennard–Jones parameters (the
depth e and s, the distance where e is zero) are obtained by
fitting measured mobilities as a function of temperature. The
charge-induced dipole term was initially evaluated assuming
that the charge was uniformly delocalized over all atoms. The
charge distribution obtained from the first-principles calcula-

tions is now usually employed. In most cases, the charge
distribution makes a noticeable ( > 1%) difference only at low
temperatures. However, a highly non-symmetric charge dis-
tribution has significant consequences at room temperature.8
Calculating the mobility by the trajectory method is time
consuming, requiring tens of hours on a workstation for the
clusters considered here.

In the three methods described above—the projection
approximation, the exact hard spheres scattering model, and the
trajectory method—the clusters are represented through the
position of atomic nuclei. In reality, the buffer gas atoms
interact with ions via their electronic wave functions, thus the
mobility actually characterizes not the nuclear geometry of an
ion, but the electron density distribution. Ideally, this distribu-
tion should be converted into a potential which can then be used
for trajectory calculations. Such an approach has not yet been
employed. However, the electron density distributions have
been introduced within the framework of a hard sphere potential
in a model that employs scattering on electron density
isosurfaces (SEDI).19 In this approach, the cluster is represented
by a surface defined numerically as a set of points in space
where the calculated electron density assumes a certain value.
This value is adjusted to fit the measured mobilities. The
collision integral is evaluated by scattering buffer gas atoms on
the isosurface. Like the EHSS model, this treatment obviously
ignores the long-range ion–buffer gas interactions that are
accounted for by the trajectory method. It is, however, superior
to the trajectory method in some respects for negative ions.
Anions often have mobilities which are systematically smaller
than the mobilities of the corresponding cations. This difference
appears to be related to the electron density of the anions
extending further than for the corresponding cations. Models
where the clusters are represented through the position of their
atomic nuclei (EHSS and the trajectory method) often fail to
accurately reproduce the mobilities of anions, presumably
because of the difficulty of representing the spill-out of the
electron density. However, the SEDI model, which is based on
calculated electron densities, can account for the differences
between the mobilities of anions and cations.

5 Semiconductor clusters: an overview

Clusters of the semiconducting elements (silicon and germa-
nium) are of interest for both scientific and technological
reasons. They are fascinating scientifically because they assume
geometries that have nothing in common with the packing of the
corresponding bulk solids. They are important technologically
because with the continuing miniaturization of electronic
devices, minimum device features will eventually approach the
cluster size regime. This makes understanding the properties of
semiconductor clusters of critical importance. Under ambient
conditions tin (which is below germanium in the periodic table)
is a metal (white tin). However, it appears that tin clusters adopt
geometries similar to those found for silicon and germanium
clusters rather than those expected for a metal cluster. Bulk tin
has another allotrope (grey tin) that is a semiconductor with the
same crystal structure as silicon and germanium, but it is only
stable at low temperatures. Because tin clusters adopt geome-
tries that are similar to those found for silicon and germanium
clusters, our findings for tin clusters are included here. Tin
clusters are of particular interest because ion mobility measure-
ments also indicate that they have melting points that are higher
than the bulk material (clusters are normally expected to have
depressed melting points). Finally, we also touch upon results
for lead clusters, to contrast them with the species of lighter
Group 14 elements.

For the reasons described above, silicon clusters in particular
have attracted an intense research effort, and there has been a lot
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of speculation about their structures. For example, the preva-
lence of Si10 and Ge10 fragments in the dissociation of Sin and
Gen anions and cations20 was interpreted as evidence for various
types of packing in larger Sin and Gen clusters, and the low
reactivity of Si13

+ with C2H4, NH3, O2, and H2O21 has been
taken to indicate icosahedral packing. However, the preference
for certain fragments appears to reflect their thermodynamic
stability rather than the presence of particular structural units,
and calculations for silicon clusters consistently show the
icosahedral geometry to be extremely high in energy and not
even stable as a local minimum. As we will describe below,
most of our current knowledge about the geometries of
medium-sized atomic clusters has been gained from ion
mobility measurements.

There have been a number of spectroscopic investigations of
small silicon and germanium clusters. The geometries of some
size-selected, matrix-isolated Sin (n ≤ 7) have been determined
by Raman and IR spectroscopy.22 Structural assignments were
made by comparing the measured vibrational spectrum to those
calculated for a variety of low energy geometries. The structures
of some Sin (n ≤ 7) and Gen (n ≤ 4) clusters have also been
elucidated using vibrationally-resolved anion PES.23 Vibra-
tional resolution could not be achieved for larger cluster sizes,
however the structures of Si10

2, Ge7
2, and Ge10

2 have been
assigned on the basis of their electronic band patterns.

Optimization of small Sin using ab initio24 and density
functional theory (DFT)25 methods yields highly coordinated
structures which are favored over bulk-like fragments because
they have fewer dangling bonds. The global minima are a
triangle for n = 3, a rhombus for n = 4, trigonal, tetragonal, and
pentagonal bipyramids for n = 5, 6, and 7 respectively, and a
distorted bicapped octahedron for n = 8. Note the transition to
three-dimensional geometries at n = 5. The geometries for n ≤
7 have been confirmed by vibrational spectroscopy. For n = 9
and 10, structures produced by capping an octahedron and a
trigonal prism are both low in energy. For Si10 the tetracapped
trigonal prism is now accepted as the global minimum.
However, the global minimum for Si9 is neither of the above but
a capped Bernal’s structure (a stack of two rhombuses with a
capping atom on top).26 Searches for ground state geometries
for n ≥ 11 using first-principles energy evaluations have been
less extensive. For n = 11–13 geometries based on further
capping of the trigonal prism unit have been considered.27,28

The results of unbiased geometry searches for these and larger
silicon clusters will be described below.

6 Ion mobility measurements for silicon cluster
cations

Fig. 2 shows drift time distributions measured for Si27
+ and

Si28
+ using an injected ion drift tube apparatus (low resolution)

and the new high resolution apparatus. The drift time distribu-
tion shows the amount of time it takes for the ions to travel
through the drift tube, and each peak represents a different
structural isomer. With the dramatic improvement in the
resolving power many more structural isomers have been
resolved. The distribution for Si27

+ is dominated by two main
isomers while that for Si28

+ is dominated by one. Fig. 3 shows
a plot of the inverse reduced mobilities of the main features
resolved in the drift time distributions for silicon cluster cations,
Sin+, with n = 4–60.29 The dominant feature in the drift time
distribution for each cluster size is represented by the filled
point while other clearly resolved features are represented by
open points. The reduced mobility is the measured mobility
normalized to the buffer gas number density at STP, while the
inverse reduced mobilities are plotted here because they are
proportional to the collision integral of the ion with the buffer
gas. The systematic increase in the inverse mobilities apparent

in Fig. 3 results from the increase in the physical size from
adding more atoms to the cluster. The break in the mobilities at
around n = 24–34 indicates a structural transition to more
compact geometries (both exist in the transition region). Crude
estimates suggested that the clusters undergo a transition from
prolate growth to near-spherical geometries.21 However, unlike
carbon clusters where it was known what geometries to expect,
for silicon the geometries were largely unknown. The results of
theoretical studies for silicon clusters with up to around 11
atoms were described above. The problems associated with
extending these studies to larger cluster sizes are well known:
first, as the cluster becomes larger the time required for a single
energy calculation usually increases as a fairly high power of
the number of atoms; and second, there is more phase space to
search before one can be sure that the lowest-energy geometry
has been found. Many reports on the structural optimization of
silicon clusters have been published over the last decade. Each
one presenting geometries lower in energy than those pre-
viously known. The major problem in these studies is not so
much finding a lower-energy geometry, but knowing when the
lowest-energy geometry is found and hence when to stop
looking. The strategy that we have adopted is to compare
properties of the calculated geometries to those that have been
measured, and to use agreement between the measured and
calculated properties as a criteria for identification of the global
minimum. Not surprisingly, the most important piece of
experimental information employed in these studies is the
mobility. While a mobility measurement alone usually cannot
uniquely identify a particular geometry (many different geome-
tries can have the same mobility) the criteria that the calculated

Fig. 2 Drift time distributions measured for Si27
+ and Si28

+ with the injected
ion drift tube apparatus (low resolution) and with the high resolution
apparatus.

Fig. 3 Plot of the inverse reduced mobilities for silicon cluster cations, Sin+,
n = 4–60. The dominant feature in the drift time distribution for each cluster
size is represented by the filled point while other clearly-resolved features
are represented by open points.
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geometry be low in energy and have a mobility that fits the
measured mobility is often sufficient to uniquely identify the
ground state. Another important piece of experimental data
employed in these studies is the dissociation energies. Agree-
ment with the measured dissociation energies as a function of
size indicates that the search procedure has, at least, come close
to finding the global minimum.30 Ionization energy measure-
ments,31 electron affinities, and fragmentation patterns have
also been used to confirm the structural assignments described
below.

The geometries for Sin, n = 10–20, were found by Ho and
collaborators32 primarily through an unbiased global search
using simulated annealing and a genetic algorithm coupled with
a tight-binding potential. Promising candidates were re-opti-
mized with DFT. Simulated annealing had repeatedly failed to
locate the lowest-energy geometries for n > 12, so the use of a
genetic algorithm was critical. The geometries for cations and
anions were found by relaxing a number of low-energy neutral
geometries for each Sin (n ≤ 20) without symmetry constraints.
Additional simulated annealing was performed using the Car–
Parrinello LDA method. For n < 12, a global search was
performed. For n > 12 a local search was initiated from the
geometries of low-energy neutrals with the objective of finding
any distortions that lower the energy. For neutrals, cations, and
anions with n < 11 the accepted geometries were obtained.19

For larger sizes, the geometries were substantially lower in
energy than any previously described in the literature. The
global minima found for n = 11–18 are shown in Fig. 4.
Geometries based on stacked Si9 tricapped trigonal prism (TTP)
units are prevalent. However, the geometries of Sin, Sin+, and
Sin2 differ in details for most n. For n = 19 and 20, near-
spherical, cage-like geometries become competitive with pro-
late TTP stacks, with the exact energetic ordering depending on
the charge.

Fig. 5 shows a comparison of the measured inverse mobilities
for silicon cluster cations (n = 4–18) to those calculated by the
trajectory method for the lowest energy cation geometries.
Since the geometries of smallest clusters (n ≤ 7) are known,
they were used to extract the Lennard–Jones parameters for the
elementary Si–He interactions (e = 1.38 meV and s = 3.47 Å).
The calculations employed partial charge distributions obtained
from DFT, although this made only a small difference ( < 1%) to
the calculated mobilities. Except for Si18

+ the calculated
mobilities are within 2% of the measured values. This is the
generally accepted error margin (it is a combination of the errors
from the experiment, the calculated bond lengths and angles,
and the mobility calculations). For Si18

+, two isomers are
resolved in the high resolution ion mobility measurements. The
mobility of the dominant isomer does not match the mobility
calculated for the lowest-energy geometry found in the DFT
calculations. However, the calculated mobility for the second
lowest-energy isomer found (a D3h geometry) is in excellent
agreement with the mobility of the dominant isomer, while the
mobility of the lowest energy isomer is in good agreement with
the mobility of the minor component in the drift time
distribution. Thus DFT may have switched the ordering of these
two isomers. It is also possible that the ground state geometry
has yet to be found for this cluster.

Mobilities calculated for all previously proposed non-TTP
based Sin geometries in the n 7 25 range deviate from the
measured values by 5–15%. In particular, the mobility measure-
ments rule out the stacked alternating triangles,33 the stacked
hexagonal rings,34 icosahedron-based geometries, and any
geometry based on the tetrahedral bonding network of bulk
silicon. In addition to agreement with the mobilities, the
dissociation energies computed for Sin (n ≤ 18) cations match
the experimental results, indicating that the search procedure
has, at least, come close to the global minima. The fragmenta-
tion channels calculated for Sin+ global minima also agree with
experiment.

Fig. 4 Global minima (obtained with the Perdew–Wang–Becke 88 gradient
corrected functional) for the Sin, n = 11–18, cations, neutrals, and anions.
For Si15

2, the Cs(I)/Cs(II) minimum that is believed to be the lowest energy
geometry (see text) is also shown. Multiple entries indicate that the
geometries are degenerate to within the computational error margin ( ~
3 meV atom21).
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7 The differences between silicon cluster anions
and cations

The mobilities of silicon cluster anions show the same general
features as observed for the cations.29 The addition of two
electrons apparently increases the stability of the prolate
isomers relative to the more spherical ones, so that the structural
transition from prolate to more spherical geometries occurs
slightly later for the anions than for the cations. The inverse
mobilities of the anions are also systematically larger than those
for the cations. This shift presumably results from differences in
the exterior electron densities caused by the addition of the extra
electrons. Mobilities calculated for the anions by the trajectory
method do not fit the measured values. The calculated inverse
mobilities increase faster as a function of cluster size than the
measured values. This discrepancy also probably results from
the electron density spill-out. The SEDI (scattering on electron
density isosurfaces) model should be able to account for this
effect. Like the exact hard-spheres scattering (EHSS) model, the
SEDI model ignores the long-range interactions between the ion
and buffer gas. However, mobilities calculated for all the silicon
cluster cations by the EHSS model are within 1% of those
calculated by the trajectory method, and so the SEDI model
should work well for the anions. This is quite different from the
situation with carbon clusters where substantial deviations
where found when the long-range interactions were not properly
taken into account. One obvious difference is that silicon
clusters have less diverse geometries than carbon clusters.
Silicon clusters with n ≥ 5 all have relatively compact, three-
dimensional structures. In addition, silicon clusters have longer
bond lengths, about 2.5 Å compared to 1.3–1.4 Å in carbon, and
for this reason the cumulative long-range potential for silicon
clusters depends less strongly on the cluster size and shape.
Thus a Si–He collision distance, which incorporates the local
environment, is more transferable to different cluster geome-
tries than for carbon.

The mobilities evaluated by the SEDI model for the global
minima of the Sin anions are within 2% of the measurements for
all sizes considered. In particular, the systematic deviations
observed with the EHSS model and the trajectory method are
not present. The systematic deviations result because the mean
negative charge per atom is proportional to 1/n. So the electron
spill-out for smaller clusters is more significant, making them
physically ‘larger’. This effect is neglected in the EHSS model,
but accounted for by the SEDI model. In principle, the same
phenomenon should arise for cations, where the mean positive
charge increases with decreasing cluster size. In practice, the
expansion of the anion’s electronic cloud appears to be greater
than the contraction of the cation’s, thus the effect is primarily
manifested for anions.

Fig. 6 shows a plot of the difference between the inverse
mobilities of the Sin anions and cations (the points are the
experimental data for the dominant isomers and the lines are
SEDI calculations). The difference is about 100 Vs m22 for
most n, but substantial fluctuations occur for some cluster sizes.

The fluctuations result when changing the charge state causes a
reordering of the low-energy isomers and hence a geometry
change. Significant fluctuations are observed for clusters as
large as Si43. The dashed line in Fig. 6 shows mobilities
calculated by the SEDI method assuming that the anions have
the same geometries as the cations (except for local relaxation).
The solid line shows the result when the global minima are used
for the anions, except for Si15

2 (see below). The minima at n =
9, 15, 16, and 18 indicate that the anion geometries are more
compact than the cation analogs for these clusters. For Si15

2 the
Cs(III) global minima does not fit the difference between the
anion and cation mobilities, while that for the second lowest
energy isomer (the Cs(I)/Cs(II) isomer shown in Fig. 4) does.
The Cs(I)/Cs(II) geometry may be the global minimum for
Si15

2. Note that the mobilities of both the Cs(III) and Cs(I)/
Cs(II) isomers are within 2% of the measured value for Si15

2; it
is the difference in mobilities on going from the cation to the
anion that does not fit for the Cs(III) geometry.

The mobility measurements have confirmed (with a few
minor adjustments) the TTP-based structures of medium-sized
Sin+ and Sin2 found by global optimization. This is a strong
indication that the neutral geometries predicted by the same
optimization scheme are also correct. This is supported by
ionization potentials calculated for the Sin global minima which
are in a good agreement with the measurements for all n < 20,
whereas ionization potentials calculated for second-lowest
energy geometries are not in agreement with experiment for
many sizes.35

8 Structural characterization of medium-sized
germanium clusters

Bulk germanium and silicon pack in the same diamond lattice
and the geometries of smallest (n ≤ 10) Gen and Sin clusters
appear to be identical by both calculation and experiment.26 So
it was often assumed that the geometries of silicon and
germanium clusters would be identical except for the 4%
difference in the bond lengths. However, mobility measure-
ments for Gen cations revealed that the structural transition to
more spherical geometries begins at n ~ 65,36 almost three
times the size where this occurs for Sin+ species. The size-
dependent features in mobilities of Gen

+ and Sin+ start differing
at n ~ 15. So in the intermediate size regime the geometries of
silicon and germanium clusters are significantly different and
perhaps the first question to answer is where and how the
growth patterns of silicon and germanium clusters diverge.

A geometry search was performed for Gen and Gen
+ with n ≤

16 by relaxing an extensive set of low-energy Sin and Sin+

isomers.37 The structures for Gen and Sin neutrals first differ at

Fig. 5 Comparison of measured inverse mobilities for the dominant features
to those calculated for the lowest-energy geometries for the Sin cations with
n = 4–18. Dashed lines delimit the customary 2% error margin.

Fig. 6 Differences between the inverse mobilities (K0
21) for Sin+ and Sin–.

The points are the measured values for the dominant isomers and the lines
are from SEDI calculations. The solid line corresponds to the assumption
that the clusters in both charge states adopt their lowest-energy geometries
(except that we have used the Cs (I)/Cs (II) isomer for Si15

2). The dashed
line shows the result if the geometries of the Sin anions were identical to
those of global minima for cations except for local relaxation.
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n = 13, while those for cations diverge one size earlier. The
geometries for Ge14 and Ge14

+ are identical to Si14 and Si14
+,

but they diverge again for for n = 15 and 16. A comparison of
the Gen and Sin geometries for n = 13, 15, and 16 is shown in
Fig. 7. For n = 13 and 15 the silicon and germanium geometries

just differ in the orientation of the capping atoms. For n = 16
the difference is more substantial. To test these predictions,
mobilities were calculated and compared with the measured
values. The results are shown in Fig. 8. The filled points are the

lowest-energy Gen
+ geometries according to the DFT calcula-

tions of ref. 37. For n = 12, 13, 15, and 16 the lowest-energy
Gen

+ geometries are different from their silicon analogs and the
open points for these clusters are the mobilities of the lowest-
energy silicon geometries relaxed for germanium. For Ge12

+,
the open point (the lowest-energy silicon geometry relaxed for
germanium) fits the measured value better than the filled point
(the lowest-energy Ge12

+ geometry according to DFT). Appar-

ently, DFT has reversed the ordering of these isomers. For
Ge13

+ the lowest-energy isomer according to DFT and the
lowest-energy silicon geometry relaxed for germanium are both
in good agreement with the measured mobility. However, for n
= 15 and 16 the lowest-energy isomers according to DFT fit the
measured mobilities while the lowest-energy silicon geometries
relaxed for germanium clearly do not. Thus comparison of the
measured and calculated mobilities proves that the growth
pathways of Sin and Gen cations indeed diverge by n = 15. This
conclusion is supported by data on the dissociation energies and
the fragmentation pathways.

9 Tin clusters are like silicon and germanium
clusters

Tin is at the transition between the semiconducting elements
above it in the periodic table, and the metallic elements below.
Tin’s normal allotrope under ambient conditions (b-tin) is a
metal with a body-centered tetragonal lattice, but it also has a
semiconducting form (a-tin) that is more stable below 286 K. a-
Tin has the same diamond lattice as silicon and germanium. The
mobilities of Snn cations have recently been measured up to n =
68.38 Fig. 9 shows a plot of the relative mobilities of silicon,

germanium, and tin clusters. The relative mobility is given by
the measured mobility divided by the mobility of a sphere of
bulk density. A prolate growth pattern is characterized by
relative mobilities which decrease with increasing cluster size.
While clusters that retain spherical geometries have relative
mobilities close to 1.0. The relative mobilities of tin clusters up
to n ~ 35, generally follow the prolate growth pattern of Gen

+,
but there are size-specific variations above n = 21 (see Fig. 9).
This suggests that tin clusters in this size regime adopt the same
TTP-based geometries as their silicon and germanium analogs.
In the n ~ 35–65 size range, tin clusters gradually rearrange
towards near-spherical geometries, passing through several
intermediate structural families. This stepwise ‘creep’ towards
spherical structures is distinct from the abrupt rearrangements
that occurs for Sin and Gen cations.

Mobilities were measured for tin clusters at low tem-
peratures. Two or three isomers were resolve for some Snn

+

sizes in the n = 18–49 range at 78 K. However, the emergence
of these isomers is just a consequence of the improved
resolution at low temperature. Hence the geometries of Snn

+

remain unchanged between 300 K and 78 K. In contrast, bulk tin
undergoes a reversible b to a phase transition within this
temperature range. Furthermore, annealing with high injection
energies does not affect the Snn

+ mobilities even up to the point
of collisional dissociation. So the prolate TTP-based structures
certainly appear to be the lowest-energy geometries for tin
clusters up to n ~ 35. This is the first time that clusters of a
metallic element have been found to form highly distorted, non-

Fig. 7 Lowest-energy geometries according to DFT (using the Perdew–
Wang–Becke 88 gradient corrected functional) for the Sin and Gen neutrals
with n = 13, 15, and 16.

Fig. 8 Relative deviations of the inverse mobilities (K0
21) calculated for

Gen cations from the measurements. Filled circles are for the lowest-energy
isomers according to DFT. For Sin+ n < 12 and n = 14 the lowest energy
germanium geometries are identical to their silicon analogs. The open points
for n = 12, 13, 15, and 16 are the mobilities of the lowest-energy silicon
geometries relaxed for germanium.

Fig. 9 Relative mobilities of group 4 cluster cations measured at room
temperature. Filled symbols are for silicon (diamonds), germanium
(squares), and tin (triangles). Empty circles are for lead.
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compact geometries; in all other cases they form near-spherical,
close-packed structures.

10 Melting points of tin clusters

The melting transition in finite systems has attracted attention
since the early 1900s. All theoretical treatments (both analyt-
ical/macroscopic and computational/microscopic) show a de-
pression of the melting point in nanoparticles compared to that
of the bulk.39 This has been confirmed in experiments on both
surface-supported and gas-phase clusters.40 The simple ex-
planation for the depressed melting points is that the surface
atoms are under-coordinated and thus can be detached from
their positions and moved around easier than internal atoms.
Previously, the melting points of free (unsupported) metal
clusters have been determined indirectly by a novel method that
depends on monitoring the extent of photodissociation as a
function of temperature.40 Another way of locating the melting
transition is directly through a shape change. Since a liquid
cluster is expected to be a spherical droplet, if the solid cluster
has a geometry that is distorted from spherical, it should be
possible to identify the melting transition from the mobility
change associated with the non-spherical to spherical transition.
Tin clusters with n ~ 20–30 have highly prolate geometries and
the low melting point of bulk tin (505 K) makes the relevant
temperature range easily accessible. Note that many small
molten metal clusters are expected to be slightly distorted from
perfect spherical symmetry because of electronic shell effects.
However, these distortions are small and, in particular, they are
much less distorted than the prolate tin clusters. Mobilities have
been measured for Snn

+ (n < 32) at temperatures up to
~ 555 K.41 Surprisingly, the clusters retained their prolate
geometries, thus no melting occurs at temperatures up to 50 K
above the bulk melting point. This is the first observation of
solid clusters above the bulk melting point. However, the origin
of the enhanced melting points is not really clear. One factor
may be that the clusters have geometries which are quite
different from the body-centered tetragonal habit of b-tin. On
the other hand, the cohesive energies of the reconstructed
clusters are still expected to be significantly less than the
cohesive energy of bulk tin.

11 The covalent to metal transition in group 14
clusters

It is apparent from the preceding that the geometries of medium-
sized tin clusters are more closely allied with the semiconduct-
ing elements of group 14 than the close packed near-spherical
geometries expected for a typical metal cluster. In a sense, the
nonmetal-to-metal transition that occurs between germanium
and tin in the bulk elements fails to occur in their clusters. So a
natural question to ask is whether this transition occurs between
Snn and Pbn. Relative mobilities measured for Pbn (n ≤ 32)
cations are shown in Fig. 9.42 The relative mobilities are close
to one for all Pbn

+ studied, which indicates that they assume
compact near-spherical geometries throughout this size range.
Such geometries are expected for metal clusters, and one can
conclude that the transition from ‘covalent’ to ‘metallic’
geometries in the group 14 clusters occurs between tin and lead,
one row lower than in the bulk elements.

12 Conclusions

In this article we have described recent developments in the
measurement and analysis of ion mobilities. The new high

resolution implementation of the technique provides an order of
magnitude improvement in the resolving power and permits the
separation of previously unresolved structural isomers. Struc-
tural assignments are based on the comparison of measured and
calculated mobilities, and there has been a corresponding
improvement in the methods used to calculate mobilities: the
trajectory method and the SEDI method (which is based on
scattering off of the electron density) are more sophisticated and
more reliable than previous methods.

A combination of ion mobility measurements and density
functional theory has been used to elucidate the geometries of
medium-sized semiconductor clusters. The geometries are
based on stacked tricapped trigonal prisms. Mobility measure-
ments alone can only provide information on the general shape
of the cluster. They usually cannot identify the specific
geometry because many different geometries can have the same
mobility. However, the combination of theory with mobility
measurements provides a powerful approach to identifying the
lowest-energy geometry. Agreement with the measured mobil-
ity is a good indication that the lowest-energy geometry has
been found and that the search for a lower-energy geometry can
be terminated. For silicon cluster anions and cations with n ≤
18 there was good agreement between the measured mobilities
and those determined for the optimized geometries, except for
Si15

2 and Si18
+. For these clusters the second-lowest energy

isomer fits the experimental data. It also possible that the
lowest-energy isomer has not yet been found in these cases. The
methods described here are quite general and should be
extendable to larger cluster sizes and to different types of
clusters.

In addition to information on the geometries, ion mobilities
can be used to provide information on phase transitions in
clusters. So far the method has only been used to show that tin
clusters with around 20–30 atoms have melting points that are
more than 50 K above that of the bulk. The measurement of
melting points for individual clusters as a function of size are
feasible. The method should also be extendable to clusters of
other types of elements, the only limitation is that there should
be a detectable geometry or volume change associated with the
melting transition.
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